Grundkurs – Grafikrechner in Klassenstufe 10

Thema 4: Trigonometrische Funktionen

Aufgabe 13

Berechnen Sie

- sin(5)a)
- b) $\sin\left(\frac{2\pi}{3}\right)$
- c) $\cos(45^\circ)$ d) $\sin\left(\frac{1}{3}\right) \cdot \cos\left(\frac{1}{4}\right)$

Aufgabe 14

Lösen Sie die Gleichungen für $x \in [-2\pi; 2\pi]$.

a)
$$\sin(x) = \frac{1}{2}$$

a)
$$\sin(x) = \frac{1}{2}$$
 b) $\sin(x) = \frac{\pi}{2}$

c)
$$\cos(x) = \frac{\pi}{2}$$

c)
$$\cos(x) = \frac{\pi}{2}$$
 d) $\cos(x) = \frac{7\pi}{5}$

Aufgabe 15

Stellen Sie die Graphen im Intervall $[-2\pi; 2\pi]$ dar, bestimmen Sie die Nullstellen sowie die Hochund Tiefpunkte und geben Sie die Gleichungen der Tangente für $x=-\frac{\pi}{2}$, x=0 und für $x=\frac{\pi}{2}$ an.

a)
$$f(x) = \sin(x) + 2\cos(x)$$

b)
$$g(x) = \cos(x) - x$$

c)
$$h(x) = x \cdot (\sin(x) + \cos(x))$$

Aufgabe 16 - Anwendungsaufgabe

Die Bewegung der Spitze eines Uhrenpendels entspricht ungefähr der Funktion

$$s(t) = 5 \cdot \sin(t)$$

mit der Strecke s in cm und der Zeit t in Sekunden.

- a) Wann befindet sich die Pendelspitze am tiefsten Punkt? Geben Sie 4 Zeitpunkte an.
- b) Berechnen Sie die Geschwindigkeit der Pendelspitze zu diesen Zeiten.
- c) Beim weitesten Ausschlag nach rechts oder links ist jeweils die aktuelle Geschwindigkeit des Pendels Null. Geben Sie 4 Zeitpunkte für diese Position an.